Science & Technology

IIT Guwahati develops affordable Prosthetic Leg with advanced features suitable for the Indian population

:- The solution is suitable for uneven terrain and supports Indian locomotion needs, such as cross-legged sitting, deep squatting


Guwahati: Indian Institute of Technology Guwahati Researchers have developed a Prosthetic Leg specifically designed for Indian conditions. It is suitable for uneven terrain and supports Indian needs such as cross-legged sitting, and deep squatting. It is also adjustable for the different age groups and multiple stages of prosthesis use. 

This research was funded by the Ministry of Education, Government of India and the Department of Biotechnology, Government of India. IIT Guwahati Researchers collaborated with 151 Army Base Hospital, Guwahati, Tolaram Bafna Kamrup District Civil Hospital, Guwahati, Guwahati Neurological Research Centre (GNRC), North Guwahati, and North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGHRIMS), Shillong.

Prosthesis development in India faces many challenges. Highly functional mobility for amputees requires devices with advanced features which are expansive and cannot be afforded by many.

Further, affordable prosthetics that are available in the market have many functional limitations. In addition, the Indian lifestyle and uneven terrain require prosthetics with specifications unique to India, which are not widely available in the market.

A team led by Prof. S. Kanagaraj, Department of Mechanical Engineering, IIT Guwahati, set out to tackle these issues. Prototypes of their models developed by this research team are currently undergoing trials. 

Fixation of prosthetic leg components to various amputees is done by a trained prosthetist. Qualitative feedback is accumulated from the amputees based on the previous usage of an earlier prosthetic leg if any. After the fixation of our developed technologies amputees were able to walk with a flexed knee in between parallel bars and outside of it on the first-day rehabilitation at Gait and Motion Analysis laboratory at IIT Guwahati. Additionally, amputees were able to use the different functionalities of the prosthetic leg with and without any additional support in their daily life.

A methodology is being developed to fit a 3D-printed test socket which is verified using computer analysis.  

Click Here for More Science & Technology